897 research outputs found

    Nondestructive Evaluation Of Thermal Barrier Coatings With Thermal Wave Imaging And Photostimulated Luminescence Spectroscopy

    Get PDF
    Gas Turbine manufacturers strive for increased operating temperatures of gas turbine engines to improve efficiency and performance. One method of increasing the temperature beyond material limits is by applying thermal barrier coatings (TBCs) to hot section components. TBCs provide a thermal gradient between the hot gases and metallic substrate, and allow an increase in turbine inlet temperatures of 100-150ºC. However, spallation of TBCs can cause catastrophic failure of turbine engines by incipient melting of the substrate. To prevent such an occurrence, non-destructive evaluation (NDE) techniques are critical for quality control, health monitoring, and life assessment of TBCs. Two techniques in development for this purpose are thermal wave imaging (TWI) and photostimulated luminescence (PL) spectroscopy. TWI is a promising NDE technique with the ability to detect integrity and thickness of TBCs. In this study, TWI was employed as an NDE technique to examine as-coated TBCs with varying thicknesses, and thermally-cycled TBCs for initiation and progression of subcritical-subsurface damage as a function of thermal cycling. TWI and thermal response amplitude were correlated to the microstructural characteristics and damage progression of TBCs based on phenomenological expressions of thermal diffusion. The TBC specimens examined consisted of air plasma sprayed ZrO2 - 7wt.% Y2O3 on NiCoCrAlY bond coats with Haynes 230 superalloy substrate. As-coated specimens of varying thicknesses were evaluated by TWI to examine its applicability as a thickness measurement tool. It was found that heat dissipation through the TBC following pulsed excitation by xenon flash lamps initially followed the 1-D law of conduction and deviated from it as a function of thickness and time. The deviation resulted from quick dissipation of heat into the conductive metallic substrate. Therefore, with calibration, TWI can be used as a tool for YSZ thickness measurements of APS TBCs in the as-coated condition for quality control measures. Specimens of uniform thickness were evaluated as a function of thermal cyclic oxidation for subcritical-subsurface damage detection. Thermal cycling was carried out in air with 30-minute heat-up, 10-hour dwell at 1150°C, 30-minute air-quench and 1-hour hold at room temperature. During thermal cycling, TBC specimens were evaluated non-destructively by TWI at room temperature every 10 to 20 thermal cycles, and selected specimens were removed from thermal cycling for microstructural analysis by scanning electron microscopy (SEM). Higher thermal response amplitude associated with disrupted heat transfer was observed where localized spallation at or near the YSZ/TGO interface occurred. The health of the TBC was monitored by a rise in thermal response amplitude which may indicate a coalescence of microcracks to a detectable level. PL has been developed to measure stress, and detect subsurface damage and polymorphic transformation within the thermally grown oxide (TGO) of TBCs. PL was employed in this study as an NDE technique for TBCs to correlate subsurface damage as a function of thermal cyclic oxidation. The TBCs consisted of ZrO2 7 wt.% Y2O3 applied by electron beam physical vapor deposition with an as-coated (Ni,Pt)Al bond coat on a CMSX-4 superalloy substrate. Specimens were thermally cycled with a 10 minute ramp to a peak temperature of 1121°C, 40 minute hold at peak temperature, and 10 minute forced air quench. The TBCs were periodically removed from thermal cycling for NDE using PL until failure. Two specimens were removed from thermal oxidation after 10% and 70% of the average lifetime for microstructural analysis by SEM. During initial thermal cycling, metastable phases and polymorphic transformations of the Al2O3 scale were examined by PL. The polymorphic transformation from a metastable phase to equilibrium a-Al2O3 was detected. Since metastable phases are thought to be detrimental to coating lifetime, detection of these phases by PL can be used as a quality control tool. Nearing end-of-life, relief of the TGO from the compressive residual stress arising from thermal expansion mismatch was detected with PL and confirmed with microstructural analysis that revealed damage initiation (e.g. microcracking within the TGO scale parallel to the interfaces.) Rise in luminescence near the R-line frequency for polycrystalline a-Al2O3 without any residual stress (i.e. n = 14402 cm-1 and n = 14432 cm-1) corresponded to regions where cracked TGO was adhered to YSZ and not exposed to compressive stresses from thermal expansion mismatch upon cooling

    Consortium neuroscience of attention deficit/hyperactivity disorder and autism spectrum disorder : the ENIGMA adventure

    Get PDF
    Neuroimaging has been extensively used to study brain structure and function in individuals with attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) over the past decades. Two of the main shortcomings of the neuroimaging literature of these disorders are the small sample sizes employed and the heterogeneity of methods used. In 2013 and 2014, the ENIGMA-ADHD and ENIGMA-ASD working groups were respectively, founded with a common goal to address these limitations. Here, we provide a narrative review of the thus far completed and still ongoing projects of these working groups. Due to an implicitly hierarchical psychiatric diagnostic classification system, the fields of ADHD and ASD have developed largely in isolation, despite the considerable overlap in the occurrence of the disorders. The collaboration between the ENIGMA-ADHD and -ASD working groups seeks to bring the neuroimaging efforts of the two disorders closer together. The outcomes of case–control studies of subcortical and cortical structures showed that subcortical volumes are similarly affected in ASD and ADHD, albeit with small effect sizes. Cortical analyses identified unique differences in each disorder, but also considerable overlap between the two, specifically in cortical thickness. Ongoing work is examining alternative research questions, such as brain laterality, prediction of case–control status, and anatomical heterogeneity. In brief, great strides have been made toward fulfilling the aims of the ENIGMA collaborations, while new ideas and follow-up analyses continue that include more imaging modalities (diffusion MRI and resting-state functional MRI), collaborations with other large databases, and samples with dual diagnoses

    6 in 1: Publikationen, Forschungsdaten, Projekte, Forschende, Einrichtungen, Auszeichnungen

    Get PDF
    Die Universität Bamberg hat ein Forschungsinformationssystem (FIS) auf Basis von DSpace-CRIS eingeführt. In enger Zusammenarbeit zwischen Universitätsbibliothek, IT-Service und Dezernat Forschungsförderung & Transfer ist ein umfassendes System entstanden, das alle Forschungsaktivitäten an der Universität Bamberg vernetzt darstellt. Das FIS enthält Projekte, Auszeichnungen, Preise und Profile der Wissenschaftlerinnen und Wissenschaftler der Universität und verknüpft sie mit Publikationen und Forschungsdaten. Damit erfüllt es zugleich die Funktion als institutionelles Repositorium und Universitätsbibliografie. Das FIS ist an das zentrale Identitätsmanagement der Universität über Shibboleth angebunden. Publikationen und bibliografische Daten können über ein Formular eingegeben oder aus externen Quellen (Datenbanken, B3Kat, LOC, CrossRef, DataCite) übernommen werden und sind mit Normdaten (GND für Personennamen) verknüpft. Weitere Ser­vices wie ORCID und SHERPA/RoMEO sind implementiert. Publikationslisten können automatisiert in beliebigen Zitationsstilen in die Webseiten der Universität eingebunden werden. Zudem bildet das FIS die zentrale Arbeitsumgebung zur Open-Access-Publikation von Monografien im Universitätsverlag sowie zur Verwaltung der Universitätsbibliografie und stellt eine Grundlage für die leistungsorientierte Mittelvergabe dar

    Academic studies, vocational training, or both? Educational pathways of school leavers with higher education entrance qualification

    Full text link
    Vor dem Hintergrund deutlich gestiegener Studienberechtigtenzahlen stellt sich die Frage, für welche Qualifizierungswege in den Beruf sich Studienberechtigte entscheiden. Es wird daher untersucht, welche Faktoren bei der Wahl der Alternativen "Berufsausbildung", "Studium" und "Doppelqualifizierung" wirksam werden und wie sich soziale Disparitäten erklären lassen. Es zeigt sich, dass die Studienaufnahme unabhängig davon, ob sie im Anschluss an eine Ausbildung erfolgt oder nicht, von soziodemografischen Merkmalen, Schulleistungen sowie Studienerfolgsaussichten, antizipierten Bildungskosten und -erträgen abhängt. (DIPF/Orig.)Against the background of increased numbers of school leavers with a higher education entrance qualification the authors have a look at educational pathways of these school leavers. The paper explores factors of choice of transition into (1) vocational training, (2) higher education, or (3) a combination of vocational training and higher education one after another. Furthermore, the authors would like to explain the social inequality that reveals within these processes. Their findings indicate that enrolment in higher education (after school or after a vocational training) depends on sociodemographic characteristics, school performances, and expectation of success, as well as anticipated costs, and benefit expectations. (DIPF/Orig.

    A polygenic risk score analysis of ASD and ADHD across emotion recognition subtypes

    Get PDF
    This study investigated the genetic components of ADHD and ASD by examining the cross-disorder trait of emotion recognition problems. The genetic burden for ADHD and ASD on previously identified emotion recognition factors (speed and accuracy of visual and auditory emotion recognition) and classes (Class 1: Average visual, impulsive auditory; Class 2: Average-strong visual & auditory; Class 3: Impulsive & imprecise visual, average auditory; Class 4: Weak visual & auditory) was assessed using ASD and ADHD polygenic risk scores (PRS). Our sample contained 552 participants: 74 with ADHD, 85 with ASD, 60 with ASD + ADHD, 177 unaffected siblings of ADHD or ASD probands, and 156 controls. ADHD- and ASD-PRS, calculated from the latest ADHD and ASD GWAS meta-analyses, were analyzed across these emotion recognition factors and classes using linear mixed models. Unexpectedly, the analysis of emotion recognition factors showed higher ASD-PRS to be associated with faster visual emotion recognition. The categorical analysis of emotion recognition classes showed ASD-PRS to be reduced in Class 3 compared to the other classes (p value threshold [pT] = 1, p = .021). A dimensional analysis identified a high ADHD-PRS reduced the probability of being assigned to the Class 1 or Class 3 (pT = .05, p = .028 and p = .044, respectively). Though these nominally significant results did not pass FDR correction, they potentially indicate different indirect causative chains from genetics via emotion recognition to ADHD and ASD, which need to be verified in future research

    Characterizing neuroanatomic heterogeneity in people with and without ADHD based on subcortical brain volumes

    Get PDF
    Background: Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder. Neuroanatomic heterogeneity limits our understanding of ADHD's etiology. This study aimed to parse heterogeneity of ADHD and to determine whether patient subgroups could be discerned based on subcortical brain volumes. Methods: Using the large ENIGMA-ADHD Working Group dataset, four subsamples of 993 boys with and without ADHD and to subsamples of 653 adult men, 400 girls, and 447 women were included in analyses. We applied exploratory factor analysis (EFA) to seven subcortical volumes in order to constrain the complexity of the input variables and ensure more stable clustering results. Factor scores derived from the EFA were used to build networks. A community detection (CD) algorithm clustered participants into subgroups based on the networks. Results: Exploratory factor analysis revealed three factors (basal ganglia, limbic system, and thalamus) in boys and men with and without ADHD. Factor structures for girls and women differed from those in males. Given sample size considerations, we concentrated subsequent analyses on males. Male participants could be separated into four communities, of which one was absent in healthy men. Significant case-control differences of subcortical volumes were observed within communities in boys, often with stronger effect sizes compared to the entire sample. As in the entire sample, none were observed in men. Affected men in two of the communities presented comorbidities more frequently than those in other communities. There were no significant differences in ADHD symptom severity, IQ, and medication use between communities in either boys or men. Conclusions: Our results indicate that neuroanatomic heterogeneity in subcortical volumes exists, irrespective of ADHD diagnosis. Effect sizes of case-control differences appear more pronounced at least in some of the subgroups

    Does the cognitive architecture of simplex and multiplex ASD families differ?

    Get PDF
    Contains fulltext : 167741.pdf (publisher's version ) (Open Access)Children with an autism spectrum disorder (ASD) and their unaffected siblings from 54 simplex (SPX, one individual in the family affected) and 59 multiplex (MPX, two or more individuals affected) families, and 124 controls were assessed on intelligence, social cognition and executive functions. SPX and MPX ASD probands displayed similar cognitive profiles, but within-family contrasts were highest in SPX families, suggesting SPX-MPX stratification may help parse etiological heterogeneity of ASD. Unaffected siblings (regardless SPX or MPX) were mostly unimpaired, suggesting that cognitive problems may be part of the defining features of ASD, rather than being an endophenotypic trait. Except for affective prosody, which appeared to be the most sensitive cognitive marker for detecting familial risk for ASD

    The intracellular Ig fold: a robust protein scaffold for the engineering of molecular recognition

    Get PDF
    Protein scaffolds that support molecular recognition have multiple applications in biotechnology. Thus, protein frames with robust structural cores but adaptable surface loops are in continued demand. Recently, notable progress has been made in the characterization of Ig domains of intracellular origin—in particular, modular components of the titin myofilament. These Ig belong to the I(intermediate)-type, are remarkably stable, highly soluble and undemanding to produce in the cytoplasm of Escherichia coli. Using the Z1 domain from titin as representative, we show that the I-Ig fold tolerates the drastic diversification of its CD loop, constituting an effective peptide display system. We examine the stability of CD-loop-grafted Z1-peptide chimeras using differential scanning fluorimetry, Fourier transform infrared spectroscopy and nuclear magnetic resonance and demonstrate that the introduction of bioreactive affinity binders in this position does not compromise the structural integrity of the domain. Further, the binding efficiency of the exogenous peptide sequences in Z1 is analyzed using pull-down assays and isothermal titration calorimetry. We show that an internally grafted, affinity FLAG tag is functional within the context of the fold, interacting with the anti-FLAG M2 antibody in solution and in affinity gel. Together, these data reveal the potential of the intracellular Ig scaffold for targeted functionalizatio
    • …
    corecore